SEJARAH STATISTIK

SEJARAH SINGKAT STATISTIK

Penggunaan istilah statistika berakar dari istilah istilah dalam bahasa latin moderen statisticum collegium (“dewan negara”) dan bahasa Italia statista (“negarawan” atau “politikus”).
Gottfried Achenwall (1749) menggunakan Statistik dalam bahasa Jerman untuk pertama kalinya sebagai nama bagi kegiatan analisis data kenegaraan, dengan mengartikannya sebagai “ilmu tentang negara (state)”. Pada awal abad ke-19 telah terjadi pergeseran arti menjadi “ilmu mengenai pengumpulan dan klasifikasi data”. Sir John Sinclair memperkenalkan nama (Statistics) dan pengertian ini ke dalam bahasa Inggris. Jadi, statistika secara prinsip mula-mula hanya mengurus data yang dipakai lembaga-lembaga administratif dan pemerintahan. Pengumpulan data terus berlanjut, khususnya melalui sensus yang dilakukan secara teratur untuk memberi informasi kependudukan yang berubah setiap saat.
Pada abad ke-19 dan awal abad ke-20 statistika mulai banyak menggunakan bidang-bidang dalam matematika, terutama probabilitas. Cabang statistika yang pada saat ini sangat luas digunakan untuk mendukung metode ilmiah, statistika inferensi, dikembangkan pada paruh kedua abad ke-19 dan awal abad ke-20 oleh Ronald Fisher (peletak dasar statistika inferensi), Karl Pearson (metode regresi linear), dan William Sealey Gosset (meneliti problem sampel berukuran kecil). Penggunaan statistika pada masa sekarang dapat dikatakan telah menyentuh semua bidang ilmu pengetahuan, mulai dari astronomi hingga linguistika. Bidang-bidang ekonomi, biologi dan cabang-cabang terapannya, serta psikologi banyak dipengaruhi oleh statistika dalam metodologinya. Akibatnya lahirlah ilmu-ilmu gabungan seperti ekonometrika, biometrika (atau biostatistika), dan psikometrika.
Meskipun ada kubu yang menganggap statistika sebagai cabang dari matematika, tetapi orang lebih banyak menganggap statistika sebagai bidang yang banyak terkait dengan matematika melihat dari sejarah dan aplikasinya. Di Indonesia, kajian statistika sebagian besar masuk dalam fakultas matematika dan ilmu pengetahuan alam, baik di dalam departemen tersendiri maupun tergabung dengan matematika.

Sejarah Geometri Non Euclides

Pada sekitar 300 SM Euclid menulis The Elements, sebuah buku yang menjadi salah satu buku paling terkenal yang pernah ditulis. Euclid menyatakan lima postulat yang ia mendasarkan semua teoremanya. Postulat kelima Euclid yang berbunyi :
“Jika dua garis yang ditarik sehingga mereka berpotongan sepertiga sedemikian rupa sehingga jumlah dari sudut interior pada satu sisi kurang dari dua sudut yang tepat, maka mereka dua baris, jika diperpanjang cukup jauh, harus berpotongan satu sama lain pada sisi tertentu”.
Jelas bahwa postulat kelima berbeda dari keempat lainnya. Itu tidak memuaskan Euclid dan ia berusaha menghindari penggunaannya selama mungkin, sebenarnya 28 proposisi pertama The Elements terbukti tanpa menggunakannya. Komentar lain yang muncul pada saat ini adalah bahwa Euclid dan banyak pengikutinya, mengasumsikan bahwa garis lurus itu tak terbatas.Proclus (410-485) menulis komentar di The Elements mana dia komentar pada bukti-bukti mencoba untuk menyimpulkan dalil kelima dari empat lainnya, khususnya ia mencatat bahwa Ptolemy telah menghasilkan bukti ‘palsu’. Proclus kemudian melanjutkan untuk memberikan bukti palsu sendiri. Namun ia tidak memberikan dalil berikut ini yang himpunanara dengan postulat kelima.
Aksioma Playfair: “Mengingat garis dan titik tidak di baris tersebut, adalah mungkin untuk menarik tepat satu garis melalui titik sejajar ke garis.”
Meskipun terkenal dari zaman Proclus , ini menjadi dikenal sebagai Aksioma Playfair himpunanelah John Playfair menulis komentar terkenal pada Euclid tahun 1795 di mana ia mengusulkan mengganti Euclid ‘s postulat kelima dengan aksioma tersebut.
Banyak usaha dilakukan untuk membuktikan dalil kelima dari empat lainnya, banyak dari mereka yang diterima sebagai bukti untuk jangka waktu sampai kesalahan itu ditemukan. Selalu kesalahan itu dengan asumsi beberapa ‘jelas’ properti yang ternyata himpunanara dengan dalil kelima. bukti ‘Satu seperti’ diberikan oleh Wallis tahun 1663 ketika ia berpikir bahwa ia telah menyimpulkan dalil kelima, tapi ia benar-benar menunjukkan hal itu adalah himpunanara dengan:
“Untuk himpunaniap segitiga, terdapat sebuah segitiga yang sama besarnya sewenang-wenang.”

Salah satu bukti mencoba ternyata lebih penting daripada kebanyakan orang lain. Ini diproduksi tahun 1697 oleh Girolamo Saccheri. Pentingnya Saccheri pekerjaan adalah bahwa ia dianggap dalil kelima palsu dan berusaha untuk mendapatkan kontradiksi.
Berikut adalah segiempat Saccheri

Dalam gambar tersebut Saccheri membuktikan bahwa sudut puncak di D dan C merupakan bukti equal.The menggunakan sifat-sifat segitiga kongruen yang Euclid dibuktikan dalam Proposisi4 dan 8 yang terbukti sebelum postulat kelima digunakan.Saccheri telah menunjukkan:
a) sudut puncak adalah> 90 ° (hipotesis dari sudut tumpul).
b) sudut puncak adalah <90 ° (hipotesis dari sudut akut).
c) sudut puncak adalah = 90 ° (hipotesis dari sudut kanan).

Postulat kelima Euclid adalah c). Saccheri membuktikan bahwa hipotesis sudut tumpul tersirat dalil kelima, sehingga mendapatkan kontradiksi. Saccheri kemudian mempelajari hipotesis sudut lancip dan banyak teorema yang berasal dari non-Euclidean geometri tanpa menyadari apa yang ia lakukan. Namun ia akhirnya ‘membuktikan’ bahwa hipotesis sudut lancip menyebabkan kontradiksi dengan asumsi bahwa ada ‘titik di infinity’ yang terletak di bidang.

Pada 1766 Lambert mengikuti garis yang mirip dengan Saccheri . Namun ia tidak jatuh ke dalam perangkap yang Saccheri jatuh ke dalam dan menyelidiki hipotesis sudut lancip tanpa memperoleh kontradiksi. Lambert memperhatikan bahwa, dalam hal ini geometri baru, jumlah sudut segitiga meningkat sebagai kawasan segitiga menurun.
Legendre menghabiskan 40 tahun hidupnya bekerja pada postulat paralel dan bekerja muncul dalam lampiran berbagai edisi buku sukses geometrinya sangat Elements de Géométrie. Legendre membuktikan bahwa Euclid ‘s postulat kelima adalah himpunan dengan jumlah sudut segitiga sama dengan dua sudut siku-siku. Legendre menunjukkan, Saccheri telah lebih dari 100 tahun sebelumnya, bahwa jumlah sudut segitiga tidak bisa lebih dari dua sudut siku-siku. Ini, sekali lagi seperti Saccheri, beristirahat pada kenyataan bahwa garis lurus yang tak terbatas. Dalam mencoba untuk menunjukkan bahwa nilai sudut tidak boleh kurang dari 180°, Legendre mengasumsikan bahwa melalui himpunan titik di pedalaman sudut selalu mungkin untuk menarik garis yang memenuhi kedua sisi sudut. Hal ini ternyata menjadi bentuk lain himpunanara dengan postulat kelima, tapi Legendre tidak pernah menyadari kesalahannya sendiri.

Dasar geometri adalah dengan saat ini tergenang di dalam masalah dalil paralel. D’Alembert , pada tahun 1767, menyebutnya skandal geometri dasar. Orang pertama yang benar-benar datang untuk memahami masalah paralel adalah Gauss. Dia mulai bekerja pada postulat kelima tahun 1792 sementara hanya 15 tahun, pada awalnya mencoba untuk membuktikan postulat kesejajaran dari empat lainnya. Pada 1813 ia telah membuat sedikit kemajuan dan menulis:
“Dalam teori paralel kita bahkan sekarang tidak lebih jauh dari Euclid . Ini merupakan bagian memalukan matematika …”

Namun dengan 1817 Gauss telah menjadi yakin bahwa postulat kelima independen dari empat postulat lainnya. Dia mulai bekerja di luar konsekuensi geometri di mana lebih dari satu baris dapat ditarik melalui paralel titik tertentu untuk garis yang diberikan. Mungkin yang paling mengejutkan dari semua, Gauss pernah menerbitkan karya ini, tetapi merahasiakannya. Pada waktu berpikir didominasi oleh Kant yang telah menyatakan bahwa geometri Euclidean adalah kebutuhan yang tak terelakkan dari pemikiran dan Gauss tidak menyukai kontroversi.

Gauss membahas teori paralel dengan temannya, matematikawan Farkas Bolyai yang membuat bukti palsu beberapa postulat paralel. Farkas Bolyai mengajari anaknya János Bolyai matematika. Pada tahun 1823 János Bolyai menulis kepada ayahnya, mengatakan bahwa dia mengetahui bahwa Gaus telah menemukan masalah tersebut sebelumnya namun tidak mempublikasikannya. János Bolyai butuh waktu dua tahun untuk menerbitkan bukunya.

Pekerjaan Bolyai berkurang karena Lobachevsky menerbitkan bekerja pada geometri non Euclidean 1829. Baik Bolyai maupun Gauss tahu pekerjaan Lobachevsky, terutama karena hanya diterbitkan dalam bahasa Rusia di Kazan Messenger publikasi universitas lokal. Lobachevsky bernasib tidak lebih baik dari Bolyai dalam memperoleh pengakuan publik atas kerja pentingnya. Ia menerbitkan investigasi geometris pada teori paralel pada tahun 1840 yang dalam 61 halamannya, memberikan catatan paling jelas dari pekerjaan Lobachevsky.

Penerbitan rekening di Perancis di Crelle ‘s ‘s Journal pada tahun 1837 membawa karyanya di-Euclidean geometri non khalayak luas tetapi komunitas matematika tidak siap untuk menerima ide-ide begitu revolusioner.
Dalam Lobachevsky buklet 1840 ia menjelaskan dengan jelas bagaimana geometri non-Euclidean karya-karyanya.
“Semua garis lurus yang dalam bidang keluar dari titik bisa, dengan mengacu pada garis lurus yang diberikan pada bidang yang sama, dibagi menjadi dua kelas – ke dalam pemotongan dan non-potong. garis batas ini dari satu dan kelas lain dari baris tersebut akan dipanggil sejajar dengan garis yang diketahui.”

Berikut ini adalah diagram Lobachevsky

Oleh karena itu Lobachevsky telah menggantikan postulat kelima Euclid dengan Postulat paralel Lobachevsky:
“Terdapat dua garis sejajar dengan garis yang diberikan melalui suatu titik tertentu tidak di telepon.”

Sejarah Geometri Euclid

Geometri Euclid merupakan sebuah sistem matematik yang disumbangkan oleh seorang ahli matematik Yunani bernama Euclid dari Alexandria. Teks Euclid, Elements merupakan sebuah kajian sistematik yang terawal mengenai geometri. Ia sudah menjadi salah satu buku-buku yang paling berpengarh di dalam sejarah, sama banyaknya dengan kaedahnya yang mempunyai isi kandungan matematik. Kaedah cara yang mengandungi andaian satu set aksiom secara intuitif yang sangat menarik, dan kemudiannya membuktikan banyak usul (teorem-teorem) daripada aksiom-aksiom berkenaan. Walaupun banyak daripada keputusan-keputusan oleh Euclid sudah dinyatakan oleh ahli-ahli matematik Yunani sebelumnya, Euclid merupakan orang yang pertama untuk menunjukkan bagaimana usul-usul ini diletakkan secara sempurna membentuk satu deduksi dan sistem logik yang komprehensif. Read More…

SEJARAH KALKULUS

Sejarah perkembangan kalkulus bisa ditilik pada beberapa periode zaman, yaitu zaman kuno, zaman pertengahan, dan zaman modern. Pada periode zaman kuno, beberapa pemikiran tentang kalkulus integral telah muncul, tetapi tidak dikembangkan dengan baik dan sistematis. Perhitungan volume dan luas yang merupakan fungsi utama dari kalkulus integral bisa ditelusuri kembali pada Papirus MoskwaMesir (c. 1800 SM). Pada papirus tersebut, orang Mesir telah mampu menghitung volume piramida terpancung. Archimedes mengembangkan pemikiran ini lebih jauh dan menciptakan heuristik yang menyerupai kalkulus integral.
Pada zaman pertengahan, matematikawan India, Aryabhata, menggunakan konsep kecil tak terhingga pada tahun 499 dan mengekspresikan masalah astronomi dalam bentuk persamaan diferensial dasar. Persamaan ini kemudian mengantar Bhāskara II pada abad ke-12 untuk mengembangkan bentuk awal turunan yang mewakili perubahan yang sangat kecil takterhingga dan menjelaskan bentuk awal dari “Teorema Rolle“. Sekitar tahun 1000, matematikawan IrakIbn al-Haytham (Alhazen) menjadi orang pertama yang menurunkan rumus perhitungan hasil jumlah pangkat empat, dan dengan menggunakan induksi matematika, dia mengembangkan suatu metode untuk menurunkan rumus umum dari hasil pangkat integral yang sangat penting terhadap perkembangan kalkulus integral. Pada abad ke-12, seorang PersiaSharaf al-Din al-Tusi menemukan turunan dari fungsi kubik, sebuah hasil yang penting dalam kalkulus diferensial. Pada abad ke-14, Madhava, bersama dengan matematikawan-astronom dari mazhab astronomi dan matematika Kerala, menjelaskan kasus khusus dari deret Taylor, yang dituliskan dalam teks Yuktibhasa.
Pada zaman modern, penemuan independen terjadi pada awal abad ke-17 di Jepang oleh matematikawan seperti Seki Kowa. Di Eropa, beberapa matematikawan seperti John Wallis dan Isaac Barrow memberikan terobosan dalam kalkulus. James Gregory membuktikan sebuah kasus khusus dari teorema dasar kalkulus pada tahun 1668.
http://upload.wikimedia.org/wikipedia/commons/thumb/6/6a/Gottfried_Wilhelm_von_Leibniz.jpg/200px-Gottfried_Wilhelm_von_Leibniz.jpg
http://bits.wikimedia.org/skins-1.18/common/images/magnify-clip.png
Gottfried Wilhelm Leibniz pada awalnya dituduh menjiplak dari hasil kerja Sir Isaac Newton yang tidak dipublikasikan, namun sekarang dianggap sebagai kontributor kalkulus yang hasil kerjanya dilakukan secara terpisah.
Leibniz dan Newton mendorong pemikiran-pemikiran ini bersama sebagai sebuah kesatuan dan kedua orang ilmuwan tersebut dianggap sebagai penemu kalkulus secara terpisah dalam waktu yang hampir bersamaan. Newton mengaplikasikan kalkulus secara umum ke bidang fisika sementara Leibniz mengembangkan notasi-notasi kalkulus yang banyak digunakan sekarang.
Ketika Newton dan Leibniz mempublikasikan hasil mereka untuk pertama kali, timbul kontroversi di antara matematikawan tentang mana yang lebih pantas untuk menerima penghargaan terhadap kerja mereka. Newton menurunkan hasil kerjanya terlebih dahulu, tetapi Leibniz yang pertama kali mempublikasikannya. Newton menuduh Leibniz mencuri pemikirannya dari catatan-catatan yang tidak dipublikasikan, yang sering dipinjamkan Newton kepada beberapa anggota dari Royal Society.
Pemeriksaan secara terperinci menunjukkan bahwa keduanya bekerja secara terpisah, dengan Leibniz memulai dari integral dan Newton dari turunan. Sekarang, baik Newton dan Leibniz diberikan penghargaan dalam mengembangkan kalkulus secara terpisah. Adalah Leibniz yang memberikan nama kepada ilmu cabang matematika ini sebagai kalkulus, sedangkan Newton menamakannya “The science of fluxions”.
Sejak itu, banyak matematikawan yang memberikan kontribusi terhadap pengembangan lebih lanjut dari kalkulus.
Kalkulus menjadi topik yang sangat umum di SMA dan universitas zaman modern. Matematikawan seluruh dunia terus memberikan kontribusi terhadap perkembangan kalkulus. 

Pengaruh penting

Walau beberapa konsep kalkulus telah dikembangkan terlebih dahulu di Mesir, Yunani, Tiongkok, India, Iraq, Persia, dan Jepang, penggunaaan kalkulus modern dimulai di Eropa pada abad ke-17 sewaktu Isaac Newton dan Gottfried Wilhelm Leibniz mengembangkan prinsip dasar kalkulus. Hasil kerja mereka kemudian memberikan pengaruh yang kuat terhadap perkembangan fisika.
Aplikasi kalkulus diferensial meliputi perhitungan kecepatan dan percepatan, kemiringan suatu kurva, dan optimalisasi. Aplikasi dari kalkulus integral meliputi perhitungan luas, volume, panjang busur, pusat massa, kerja, dan tekanan. Aplikasi lebih jauh meliputi deret pangkat dan deret Fourier.
Kalkulus juga digunakan untuk mendapatkan pemahaman yang lebih rinci mengenai ruang, waktu, dan gerak. Selama berabad-abad, para matematikawan dan filsuf berusaha memecahkan paradoks yang meliputi pembagian bilangan dengan nol ataupun jumlah dari deret takterhingga. Seorang filsuf Yunani kuno memberikan beberapa contoh terkenal seperti paradoks Zeno. Kalkulus memberikan solusi, terutama di bidang limit dan deret takterhingga, yang kemudian berhasil memecahkan paradoks tersebut.

SEJARAH TEORI BILANGAN

Gambaran sejarah purbakala dari Matematika
Pada mulanya di zaman purbakala banyak bangsa-bangsa yang bermukim sepanjang sungai-sungai besar. Bangsa Mesir sepanjang sungai Nil di Afrika, bangsa Babilonia sepanjang sungai Tigris dan Eufrat, bangsa Hindu sepanjang sungai Indus dan Gangga, bangsa Cina sepanjang sungai Huang Ho dan Yang Tze. Bangsa-bangsa itu memerlukan keterampilan untuk mengendalikan banjir, mengeringkan rawa-rawa, membuat irigasi untuk mengolah tanah sepanjang sungai menjadi daerah pertanian untuk itu diperlukan pengetahuan praktis, yaitu pengetahuan teknik dan matematika bersama-sama. Read More…

Download soal ujian nasional kimia 2013

untuk mendownload prediksi soal ujian nasional silahkan klik disini